A Strongly Aperiodic Set of Tiles in the Hyperbolic Plane

نویسنده

  • Chaim Goodman-Strauss
چکیده

We construct the first known example of a strongly aperiodic set of tiles in the hyperbolic plane. Such a set of tiles does admit a tiling, but admits no tiling with an infinite cyclic symmetry. This can also be regarded as a “regular production system” [5] that does admit bi-infinite orbits, but admits no periodic orbits.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hierarchical strongly aperiodic set of tiles in the hyperbolic plane

We give a new construction of strongly aperiodic set of tiles in H, exhibiting a kind of hierarchical structure, simplifying the central framework of Margenstern’s proof that the Domino problem is undecidable in the hyperbolic plane [13]. Ludwig Danzer once asked whether, in the hyperbolic plane, where there are no similarities, there could be any notion of hierarchical tiling—an idea which pla...

متن کامل

Deterministic Aperiodic Tile Sets

Wang tiles are square tiles with colored edges. We construct an aperiodic set of Wang tiles that is strongly deterministic in the sense that any two adjacent edges of a tile determine the tile uniquely. Consequently, the tiling group of this set is not hyperbolic and it acts discretely and co-compactly on a CAT(0) space.

متن کامل

How to Create Problems

In any given fixed setting, say polygonal tiles in the hyperbolic plane, we can ask a variety of questions, such as: " Is there an aperiodic set of tiles? " In this talk, we'll look at an interlocked web of such questions and discuss a variety of conjectures and results, both old and new.

متن کامل

A Note on Aperiodic Ammann Tiles

We present a variant of Ammann tiles consisting of two similar rectilinear hexagons with edge subdivision, which can tile the plane but only in non periodic ways. A special matching rule, ghost marking, plays a key role in the proof. We shall show that the set of tiles in Figure 1 is aperiodic, that is, it tiles the plane but only in non periodic way.

متن کامل

An aperiodic set of 11 Wang tiles

A new aperiodic tile set containing 11 Wang tiles on 4 colors is presented. This tile set is minimal in the sense that no Wang set with less than 11 tiles is aperiodic, and no Wang set with less than 4 colors is aperiodic. Wang tiles are square tiles with colored edges. A tiling of the plane by Wang tiles consists in putting a Wang tile in each cell of the grid Z so that contiguous edges share ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2003